The Effect of Eu Doping on Microstructure, Morphology and Methanal-Sensing Performance of Highly Ordered SnO2 Nanorods Array

نویسندگان

  • Yanping Zhao
  • Yuehua Li
  • Xingping Ren
  • Fan Gao
  • Heyun Zhao
چکیده

Layered Eu-doped SnO₂ ordered nanoarrays constructed by nanorods with 10 nm diameters and several hundred nanometers length were synthesized by a substrate-free hydrothermal route using alcohol and water mixed solvent of sodium stannate and sodium hydroxide at 200 °C. The Eu dopant acted as a crystal growth inhibitor to prevent the SnO₂ nanorods growth up, resulting in tenuous SnO₂ nanorods ordered arrays. The X-ray diffraction (XRD) revealed the tetragonal rutile-type structure with a systematic average size reduction and unit cell volume tumescence, while enhancing the residual strain as the Eu-doped content increases. The surface defects that were caused by the incorporation of Eu ions within the surface oxide matrix were observed by high-resolution transmission electron microscope (HRTEM). The results of the response properties of sensors based on the different levels of Eu-doped SnO₂ layered nanoarrays demonstrated that the 0.5 at % Eu-doped SnO₂ layered nanorods arrays exhibited an excellent sensing response to methanal at 278 °C. The reasons of the enhanced sensing performance were discussed from the complicated defect surface structure, the large specific surface area, and the excellent catalytic properties of Eu dopant.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Promotion on Acetone Sensing of Single SnO2 Nanobelt by Eu Doping

SnO2 nanobelts (NBs) have unique structural and functional properties which attract great attention in gas detecting. In this work, Eu doping is adopted to improve the gas sensitivity of pure SnO2, especially to enhance the response to one single gas. The Eu-doped SnO2 NBs, pure-SnO2 NBs, and their single NB devices are fabricated by simple techniques. The sensing properties of the two sensors ...

متن کامل

Fabrication of highly ordered metallic nanowire arrays by electrodeposition

Related Articles Morphology-controlled synthesis of silver nanoparticles on the silicon substrate by a facile silver mirror reaction AIP Advances 3, 032119 (2013) Relationship of microstructure properties to oxygen impurities in nanocrystalline silicon photovoltaic materials J. Appl. Phys. 113, 093501 (2013) Violet-blue photoluminescence from Si nanoparticles with zinc-blende structure synthesi...

متن کامل

Morphology Control of Tin Oxide Nanostructures and Sensing Performances for Acetylene Detection

Morphology Control plays an important role in gas sensing properties of metal oxide semiconductor based gas sensors. In this study, various morphologies of SnO2 nanostructures including nanobulks, nanospheres, nanorods, and nanowires were successfully synthesized via a simple hydrothermal method assisted with different surfactants. X-ray powder diffraction and scanning electron microscopy were ...

متن کامل

Improved Li storage performance in SnO2 nanocrystals by a synergetic doping

Tin dioxide (SnO2) is a widely investigated lithium (Li) storage material because of its easy preparation, two-step storage mechanism and high specific capacity for lithium-ion batteries (LIBs). In this contribution, a phase-pure cobalt-doped SnO2 (Co/SnO2) and a cobalt and nitrogen co-doped SnO2 (Co-N/SnO2) nanocrystals are prepared to explore their Li storage behaviors. It is found that the m...

متن کامل

Fabrication of Highly Ordered Gold Nanorods Film Using Alumina Nanopores

A simple method for fabrication of highly ordered gold nanorod film is introduced in this article. The procedure is based on thermal evaporation of gold into a porous anodic alumina film (PAA). The PPA film was fabricated by combining the hard and mild anodization. This combination effectively decreases the processing time of fabrication of highly ordered porous anodic alumina film with c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017